Localized Hardy Spaces H Related to Admissible Functions on RD-Spaces and Applications to Schrödinger Operators

نویسندگان

  • Dachun Yang
  • Yuan Zhou
چکیده

Let X be an RD-space, which means that X is a space of homogenous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in X . In this paper, the authors first introduce the notion of admissible functions ρ and then develop a theory of localized Hardy spaces H ρ (X ) associated with ρ, which includes several maximal function characterizations of H ρ (X ), the relations between H ρ (X ) and the classical Hardy space H1(X ) via constructing a kernel function related to ρ, the atomic decomposition characterization of H ρ (X ), and the boundedness of certain localized singular integrals on H ρ (X ) via a finite atomic decomposition characterization of some dense subspace ofH ρ (X ). This theory has a wide range of applications. Even when this theory is applied, respectively, to the Schrödinger operator or the degenerate Schrödinger operator on R, or the sub-Laplace Schrödinger operator on Heisenberg groups or connected and simply connected nilpotent Lie groups, some new results are also obtained. The Schrödinger operators considered here are associated with nonnegative potentials satisfying the reverse Hölder inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localized BMO and BLO Spaces on RD-Spaces and Applications to Schrödinger Operators

An RD-space X is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling condition holds in X . Let ρ be an admissible function on RD-space X . The authors first introduce the localized spaces BMOρ(X ) and BLOρ(X ) and establish their basic properties, including the JohnNirenberg inequality for BMOρ(X ), several equivalent characterizat...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

Bilateral composition operators on vector-valued Hardy spaces

Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$‎. ‎We investigate some operator theoretic properties of‎ ‎bilateral composition operator $C_{ph‎, ‎T}‎: ‎f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq‎ ‎+infty$.‎ ‎Compactness and weak compactness of $C_{ph‎, ‎T}$ on $H^p(X)$‎ ‎are characterized an...

متن کامل

Localized Morrey-Campanato Spaces on Metric Measure Spaces and Applications to Schrödinger Operators

Let X be a space of homogeneous type in the sense of Coifman and Weiss and D a collection of balls in X . The authors introduce the localized atomic Hardy space H q D (X ) with p ∈ (0, 1] and q ∈ [1,∞] ∩ (p,∞], the localized Morrey-Campanato space E p D (X ) and the localized Morrey-Campanato-BLO space Ẽ p D (X ) with α ∈ R and p ∈ (0,∞) and establish their basic properties including H q D (X )...

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009